
MILLIMAN BRIEFING NOTE

The Rise of Python: 1 May 2021
Powerful, robust actuarial software

The Rise of Python
Powerful, robust calculation software
Donal McGinley, FSAI

Python has become the fastest-growing
major programming language in the world1.
It has surged in popularity over the last
decade, following the development of its
industry-leading capabilities in data science,
machine learning and artificial intelligence,
and it is now one of the most popular and
widely used languages in the world2. In this
briefing note I discuss some of the reasons
for its popularity.

Many actuaries and insurers have started using Python for
many reasons including:

 It has a vast array of powerful functionality which is
available for free to anyone who wants to use it.

 It has very strong data science capabilities, as it is
excellent at manipulating data, such as importing,
exploring, checking, modelling, visualising, and
summarising data.

 It has strong modelling capabilities, and can be used
to build actuarial models such as discounted cashflow
models and pricing models, or to build less traditional
models such as machine learning or artificial intelligence
models.

 It is good for model industrialisation, and can be used
to build full end-to-end processes, such as regular
valuation processes and ORSAs.

 It is a general purpose programming language which
was designed to be robust enough to be used in
production. It is a high-level language (similar to VBA)
which was designed to be easier to use and easier to
learn than other programming languages.

This briefing note gives an overview of Python and explains
why it has grown so rapidly in recent years, with a particular
focus on the capabilities relevant for actuaries and insurers.

In future briefing notes, we will discuss other new modelling
tools available, including case studies which demonstrate the
modelling improvements that can be made.

Follow us on LinkedIn to get notifications of our latest briefing
notes and blog posts.

1 https://insights.stackoverflow.com/survey/2019
2 See Appendix A for some measures of its popularity

Use Cases
Actuaries are increasingly using Python for many different
types of work, including:

 Discounted cashflow modelling (IFRS and Solvency II)
 End-to-end valuation processes
 ORSAs
 SCR aggregation and risk margin calculation
 Reinsurance calculations
 Policyholder asset lookthrough
 Lapse and mortality investigations
 Analysing past policyholder performance
 Data checks
 Output checks
 Machine learning
One of the main benefits of using Python is that it is powerful
and robust enough to carry out all of these tasks. In the past
we have relied on many different software tools such as
Excel, VBA, Access, SQL, and other proprietary software.
Now it is possible to perform these types of calculations in
one single tool (Python). Python is a powerful, robust tool for
performing everyday actuarial work. Also, it contains exciting
functionality which isn’t typically found in conventional
actuarial software, such as machine learning capabilities.
Going forward, I expect that actuaries will replace models
and processes built in Excel or SQL with Python models and
processes, as Python3 is a powerful, robust tool with strong
calculation and data processing capabilities.

History of Python
Python was created in 1990 by Guido Van Rossum, a Dutch
programmer, who named it after his favourite comedy troupe,
Monty Python’s Flying Circus. He had observed that
computers were becoming faster and cheaper over time,
whereas programmers were generally becoming more
expensive due to salary inflation4. He expected these trends
to continue over time. He set out to create a language which
would maximise programmer productivity, by creating a high-
level “batteries included” language, which would be easy to
learn and easy to use, with ample pre-existing functionality,
enabling developers to write code quickly and efficiently. He

3 Note that, in this document, when I refer to Python, I typically
mean the core Python libraries and its widely used data science
libraries
4 https://www2.computerworld.com.au/article/255835/a-
z_programming_languages_python/

https://www.linkedin.com/company/milliman-ireland
https://www.linkedin.com/company/milliman-ireland
https://insights.stackoverflow.com/survey/2019
https://www2.computerworld.com.au/article/255835/a-z_programming_languages_python/
https://www2.computerworld.com.au/article/255835/a-z_programming_languages_python/

recognised that this might lead to some undesirable
behaviour, such as slower runtimes, but reasoned that it is
better to maximise your most scarce resource (employee
hours) rather than optimising items like run speeds.

Python had a small user base in the 1990s. It was very
popular in certain niches, but was not a mainstream
language. Initially, it had limited functionality. However, over
time, a virtuous circle developed. Python developers
released powerful libraries which anyone could use.
Newcomers started learning Python, so that they could avail
of these new libraries. This increased the number of people
who knew Python. Some of these newcomers started
building their own libraries or improving existing libraries,
which in turn led to better libraries, which in turn prompted
more newcomers to learn Python. Python now has a very
large, active community of developers, who can quickly
follow any market trends, and who can create their own
market trends by building market-leading software.

One library which kick-started the virtuous circle was the
release of the Django website-building framework in the mid-
2000s, which convinced a lot of web developers to start
using Python. Python quickly became one of the go-to
languages for building websites.

Python became one of Google’s official languages in 2006,
which increased its popularity, and led to more rapid
development of the Python ecosystem. It is currently used in
many large organisations, including Google, Facebook,
Amazon, Instagram, Spotify, Netflix, NASA and CERN5.

Many universities started to use Python in their “Introduction
to Computer Programming” courses6, as it is easier to learn
than other programming languages, enabling lecturers to
focus on high-level programming concepts, rather than
getting bogged down in low-level computer science topics
like memory management. This has increased the size of
the Python community, and increased the supply of Python
developers.

Python was upgraded gradually over time. When new
versions were released, users could choose to upgrade or to
stay on their existing version. Most new releases were
backward compatible so old models would still run in newer
versions of Python. However, in 2008, Python 3 was
released. This was a major change, and was not completely
backward-compatible. Some Python 2 code would not run in
Python 3, and existing code bases had to be converted from
Python 2 to Python 3. Some users were unhappy with this

5
https://en.wikipedia.org/wiki/Python_%28programming_language%2
9#Uses
6 https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-
most-popular-introductory-teaching-language-at-top-u-s-
universities/fulltext

change, particularly companies with large code bases. This
caused a split in the Python community, with some
companies continuing to use Python 2 and some moving to
Python 3. This episode caused some rancour within the
community and slowed the development of Python.
However this isn’t an issue for new users, who don’t have
existing Python 2 code bases. New users can just start with
the latest version of Python 3.

Python became an industry leader in data science following
the development of its data science libraries in the late 2000s
and early 2010s7. These libraries have powerful data
processing capabilities, including the ability to import data
from SQL/Excel/CSV/big data systems, data exploration and
visualisation, data cleaning and reformatting, modelling,
advanced scientific calculations, machine learning and
creation of end-to-end processes. Python developers took
inspiration from existing data science languages such as R
and Matlab, ensuring that the Python libraries would have
many of the desirable capabilities found in those languages.
The development of these libraries, coupled with the
worldwide surge in interest in data science, catapulted
Python from being a mid-ranking programming language into
one of the top-10 most used languages in the world.

The final development which spurred the growth of Python
was the release of artificial intelligence libraries in the mid-
2010s. Google released its powerful Tensorflow8 artificial
intelligence library in 2015, and Facebook released its
Pytorch9 artificial intelligence library in 2016. Python users
can use Python’s data science libraries to prepare the data,
and can use Tensorflow or Pytorch to build powerful AI
models based on that data. Python has become the defacto
industry leader in artificial intelligence modelling. The
release of these libraries, coupled with the worldwide surge
in interest in artificial intelligence modelling, has led to
Python becoming one of the top-3 most used computer
programming languages in the world.

Python is now the fastest growing major programming
language in the world. See the Appendix for more detail.

The Python Ecosystem
One of the main reasons why Python has become popular is
its large ecosystem of modular libraries, each of which
contains specialised functionality. Python has a
decentralised, modular structure, and a permissive licence.
This enables users to build their own libraries, without
requiring them to get permission from the core Python

7 https://qz.com/1126615/the-story-of-the-most-important-tool-in-
data-science/
8 https://www.tensorflow.org/
9 https://pytorch.org/

https://en.wikipedia.org/wiki/Python_%28programming_language%29#Uses
https://en.wikipedia.org/wiki/Python_%28programming_language%29#Uses
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://qz.com/1126615/the-story-of-the-most-important-tool-in-data-science/
https://qz.com/1126615/the-story-of-the-most-important-tool-in-data-science/
https://www.tensorflow.org/
https://pytorch.org/

developers. As a result, many libraries have been actively
developed and improved over time, in many different areas
such as data science and web development. Python’s
abilities can improve rapidly because teams of developers
are free to work on whatever projects they wish.

The core Python libraries are the “glue” which hold the whole
Python ecosystem of libraries together. The core Python
libraries are maintained by the core Python developers and
are quite stable, well tested and robust. Core Python is a
general purpose programming language, which can do
general programming tasks, and wasn’t designed to
specialise in any particular area.

Specialised functionality can be found in the thousands of
non-core libraries in the Python ecosystem. These libraries
have been developed by other teams of developers, and
they interlink seamlessly with core Python. For example, the
following libraries are often used by actuaries and data
scientists:

 Numpy (array based calculations)
 Pandas (2-d data tables and SQL-style calculations)
 SciPy (scientific calculations such as solvers)
 Numba (high-speed calculations)
 Matplotlib / Seaborn (static graphs)
 Bokeh / Dash (interactive graphs)
 Scikit-Learn (machine learning)
 Tensorflow / Pytorch (AI / neural networks)
 Pyspark / Dask / SQLite (big data storage)
All of these libraries are maintained by different teams of
developers, therefore they can be upgraded and improved
simultaneously. This modular system, and large community
of developers, has enabled Python to improve rapidly in
many different areas.

For example, before 2015, Python was not a leading
language for artificial intelligence (deep neural network)
modelling. Other languages had better capabilities. In 2015,
Google developers released the Tensorflow neural network
library, which they had developed internally, and in 2016,
Facebook developers released the Pytorch neural network
library. These libraries allowed users to build, train and test
powerful artificial intelligence models. These libraries were
very powerful and relatively easy to use. Python immediately
became the leading language for artificial intelligence
modelling after these libraries were released to the public.
This example highlights how quickly Python’s capabilities
can improve. In this case the improvements were driven by
two tech giants who used Python internally. In other cases
the improvements are driven by other less-famous members
of the Python community.

What does Python Code Look Like?
Python is a high-level language, similar to VBA. It was
designed to be easy to read and easy to understand. The
following screenshot shows some basic Python code,
including a data structure (a list), a “for” loop, an “if”
statement and a print statement. Note that the code has
fewer brackets and semicolons than other programming
languages, and is structured using indentation (tabs), which
results in less clutter and arguably makes it easier to read
than other languages.

Python has many external libraries, which contain
specialised functionality. For example, actuaries often use
the Pandas data science library. The following code loads
the library, imports data from a CSV file and prints out the
first five rows of the datafile. Note how easy it is to import
and use this powerful library.

https://numpy.org/
https://pandas.pydata.org/docs/
https://docs.scipy.org/doc/scipy-1.5.4/reference/
https://numba.readthedocs.io/en/stable/user/overview.html
https://matplotlib.org/
https://seaborn.pydata.org/
https://bokeh.org/
https://plotly.com/dash/
https://scikit-learn.org/stable/index.html
https://www.tensorflow.org/
https://pytorch.org/
https://spark.apache.org/docs/latest/api/python/index.html
https://dask.org/
https://sqlite.org/index.html

Python vs Other Languages
Actuaries use a wide range of software, including traditional
software like Excel, VBA and SQL; data science languages
like R; and proprietary software such as pricing and
discounted cashflow modelling software.

Python is a relative newcomer in the field of actuarial
modelling. It has taken inspiration from a lot of existing
software, and has implemented a lot of the desirable features
from existing languages. Most tasks which can be done in
the languages above can also be done in Python.

EXCEL
Anything that can be done in Excel (and VBA) can also be
done in Python. Both are general-purpose calculation
software, and can be used to build many different types of
models. While they can be used for actuarial calculations,
they weren’t specifically designed for this and don’t contain
any specialised actuarial capabilities. In my opinion, the
main difference between them in terms of design philosophy
is that Excel has been designed for maximum flexibility,
whereas Python has been designed to be robust in
production. Excel is a very good tool for certain tasks. It is
easy to use and easy to learn, and is useful for checking
results and sharing results. However it is slow, cannot
handle large datasets and is quite manual. It lacks many
features which would be desirable in production software,
such as version control software. In theory, Excel could be
used to perform almost any actuarial task, but in practice the
inherent weaknesses in Excel make it inappropriate or
unusable for many actuarial tasks and as a result many
actuaries rely on other pieces of software in addition to
Excel.

Python is more difficult to learn, but is much faster, can
handle much larger datasets, and is more automated and
robust than Excel. Crucially, I think that models built in
Python are capable of achieving all of the best practices for
actuarial modelling10. This makes Python suitable for many
types of actuarial work.

The table below compares Python to Excel in certain areas.

10 I am not aware of any definitive list of best practices for actuarial
modelling, however I think that “Best Practices for Scientific
Computing” by Wilson et al. gives good guidance in this area.

Model Attributes Winner

Easy-to-Use, Easy-to-Learn Excel

Ad-hoc calculations and prototypes on
small datasets (less than 100k rows) Excel

Ad-hoc calculations and prototypes on
larger datasets (more than 100k rows) Python

Robustness in production Python

Checking results and sharing results Excel

Ability to achieve best practices Python

Automation / amount of manual effort
required Python

Stability Excel

Expected rate of future improvements Python

Big data Python

Speed Python

Advanced scientific computing capabilities Python

Machine learning capabilities Python

While the table above implies that Python and Excel are
competitors, in fact they work quite well together. Python
libraries such as OpenPyXL and XlWings allow Python users
to import data from spreadsheets, manipulate spreadsheets,
and save calculation results to Excel. Python users can get
the best of both worlds by using Python and Excel together.

For example, in our Python workflows, we typically do most
or all of the calculations in Python, and at the end of the run
Python will export various summaries of the results to Excel,
where they can be manually checked by Excel users. In this
way we can get the best of both worlds, as Python is a fast
robust calculation engine and can do the calculations in an
automated manner, whereas Excel is a good tool for sharing
results and performing sense-checks on the run results.

In practice, I think that actuaries will continue to use Excel for
the foreseeable future, as it is a good tool, but I think that
actuaries will increasingly migrate larger models and
processes to Python to take advantage of Python’s strong
production capabilities.

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1
001745

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

SQL
SQL is widely used in the actuarial community. SQL is very
good at doing what it was designed to do – namely to store
and extract data from relational databases. However it is
often used for other tasks which it is not good at, such as
performing complex calculations on the data. SQL’s top-
down declarative style of coding enables users to write fast
and robust queries, however it can be quite complex and can
be difficult to spot-check results at a granular level. This
makes it difficult to write complex queries and test them, and
it introduces key person risk. Python is better at doing
complex calculations than SQL, because users can choose
between using a SQL-style of calculation (such as groupby
queries and table joins) or an imperative Excel/VBA-style of
calculation (such as if statements, for loops and array
calculations). It is easier to spot-check and sense-check
results in Python because it is easier to dig into results and
view intermediate results, whereas SQL typically outputs the
end results and can be very difficult to view intermediate
results.

Python can connect to SQL servers and can run SQL
queries. This enables Python users to get the best of both
worlds, as they can have a single workflow which contains
both SQL and Python elements. Python can be used for
calculations and data analysis, and Python can pull data
from the SQL server and save results to the SQL server. I
expect to see actuaries migrate more and more calculations
and processes from SQL to Python as it is easier to develop
and test calculations and processes in Python, and Python
interlinks well with companies’ existing databases and
systems.

R
Python wasn’t widely used for data science tasks until the
development of its data science libraries over the last
decade. However it has experienced phenomenal growth in
recent years and more and more actuaries have started
using it.

R is a data science tool which is popular within the actuarial
community. Like Python, R is an open-source programming
language with modular libraries and is being actively
developed by the R community. R is a statistical language,
built by statisticians for statisticians. Python is a general
purpose language which happens to be good at data
science. Both tools are excellent at actuarial modelling and
data processing due to the large overlap between statistics,
data science and actuarial work. They seem to have similar
levels of capability at present. R may be better than Python
for ad-hoc analyses and once-off statistical investigations.
Python may be better than R for repeated analyses and
building robust regular processes. On most major surveys,
the number of R users has been steady recently, whereas
the number of Python users has grown strongly. It can be

difficult to do a like-for-like comparison of the popularity of R
and Python because R is a niche statistical language
whereas Python is a general purpose language and is used
for many things, including data science, web development
and systems programming. It is safe to say that Python is far
more popular and growing more quickly in general usage
around the world, but in the particular niche of data science /
statistics / actuarial modelling they are both very popular.

Why Actuaries Use Python
There are many reasons why actuaries have started using
Python, including:

 It has a fast, powerful calculation engine
 It was designed for high productivity and rapid model

development
 It can handle millions of rows of data
 It is an excellent “glue” language, which can be used to

combine many individual models into a single end-to-
end process

 It is interoperable with other languages, such as Excel,
R, Julia, SQL and big data systems

 It can import data from Excel, csv, SQL, big data
systems and many other filetypes, do calculations, and
export results back to Excel, csv, SQL, PDF, and big
data systems

 It contains powerful visualisation software
 It was designed for production and is robust
 It is a high-level language, which is relatively easy to

learn and relatively easy to use.
o Many university and online courses
o Good online documentation and Q&As

 It is a general purpose programming language which
can be used for any type of task

 It is free open-source software, with a permissive license
(no procurement issues)

 It is widely used, and still growing in popularity
The Future of Python
Python is a mature, stable language. The core Python
libraries are likely to remain quite stable over time, with
incremental changes every year, for the foreseeable future.
The current roadmap does not include any major changes.
This stability is important because it provides a stable base
which the rest of the Python ecosystem can be built on.

Python’s ecosystem of external libraries should continue to
improve in the coming years. The modular structure of
Python’s ecosystem is one of the main strengths of Python.
It enables Python to be an industry leader or a fast follower
in multiple industries. Many of the older libraries are quite
stable and reliable. Many of the newer libraries contain
exciting new functionality and are adding more functionality
all the time. If there is a need for some new functionality, the
owners of existing libraries can add the new functionality to
their existing library, or developers can create a new library

which has the required functionality. This enables Python to
develop industry-leading capabilities, through continuous
improvement of existing libraries or the development of new
libraries.

Python is one of the most popular languages in the world
and has thousands of developers continuously upgrading its
various libraries. In my opinion, the other data science
languages will struggle to keep up with Python’s pace of
improvements because they aren’t as popular and don’t
have as many developers working on them. As long as
Python continues to be popular, its capabilities should
continue to improve at a fast rate. I think that the future is
bright and we should continue to see continuous
improvements in the Python ecosystem over time.

How can Milliman help?
Companies that are starting out with Python will face a
number of challenges, including modelling challenges
(determining the best approach to take and the best libraries
to use); IT challenges (getting comfortable with using open-
source software, package management, version control
systems); personnel challenges (key person risk, ensuring
that the Company has sufficient trained staff who know how
to use Python); model validation challenges (how to validate
Python models in practice) and productionisation challenges
(how to ensure that your production models and processes
are suitably robust).

Here in Milliman, we can help you to overcome these
challenges and to build models and processes in line with
best practices. Milliman can assist you with all aspects of
your Python needs, including:

 Training
 Identifying applications
 Identifying suitable libraries and techniques for particular

circumstances
 Model development and validation
 Process development and validation
 Constraints and practical challenges
For further information, please contact your usual Milliman
consultant or those below.

Appendix A: Popularity
STACK OVERFLOW TRENDS 11
(Python in blue, R in green)

GOOGLE TRENDS: INTEREST OVER TIME 12
(Python in blue, R in red)

11
https://insights.stackoverflow.com/trends?tags=python%2Cc
%23%2Cr%2Cmatlab%2Csas

12 https://trends.google.com/trends/explore?date=2011-04-
30%202021-04-
30&q=%2Fm%2F05z1_,%2Fm%2F0212jm,%2Fm%2F053_x
,c%23

IEEE SPECTRUM: THE TOP PROGRAMMING
LANGUAGES 202013

TIOBE INDEX FOR MAY 202114

13 https://spectrum.ieee.org/static/interactive-the-top-
programming-languages-2020

14 https://www.tiobe.com/tiobe-index/

https://insights.stackoverflow.com/trends?tags=python%2Cc%23%2Cr%2Cmatlab%2Csas
https://insights.stackoverflow.com/trends?tags=python%2Cc%23%2Cr%2Cmatlab%2Csas
https://trends.google.com/trends/explore?date=2011-04-30%202021-04-30&q=%2Fm%2F05z1_,%2Fm%2F0212jm,%2Fm%2F053_x,c%23
https://trends.google.com/trends/explore?date=2011-04-30%202021-04-30&q=%2Fm%2F05z1_,%2Fm%2F0212jm,%2Fm%2F053_x,c%23
https://trends.google.com/trends/explore?date=2011-04-30%202021-04-30&q=%2Fm%2F05z1_,%2Fm%2F0212jm,%2Fm%2F053_x,c%23
https://trends.google.com/trends/explore?date=2011-04-30%202021-04-30&q=%2Fm%2F05z1_,%2Fm%2F0212jm,%2Fm%2F053_x,c%23
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://www.tiobe.com/tiobe-index/

GITHUB: THE STATE OF THE OCTOVERSE
202015
Top Languages since 2014 (Python in dark blue):

15 https://octoverse.github.com/

CONTACT

Donal McGinley
donal.mcginley@milliman.com

Aisling Barrett
aisling.barrett@milliman.com

© 2021 Milliman, Inc. All Rights Reserved. The materials in this document represent the opinion of the authors and are not representative of the views of Milliman, Inc. Milliman does not certify
the information, nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent review of its
accuracy and completeness has been performed. Materials may not be reproduced without the express consent of Milliman.

Milliman is among the world’s largest providers of actuarial and related
products and services. The firm has consulting practices in life insurance
and financial services, property & casualty insurance, healthcare, and
employee benefits. Founded in 1947, Milliman is an independent firm with
offices in major cities around the globe.

ie.milliman.com

https://octoverse.github.com/
mailto:donal.mcginley@milliman.com
mailto:aisling.barrett@milliman.com
file://DUBL-FS01/Company/LifeStrategies/R&PD%20Committee/Python%20Blogs/1.%20For%20Internal%20Review/ie.milliman.com/

	Use Cases
	History of Python
	The Python Ecosystem
	What does Python Code Look Like?
	Python vs Other Languages
	Excel
	SQL
	R

	Winner
	Model Attributes
	Excel
	Easy-to-Use, Easy-to-Learn
	Ad-hoc calculations and prototypes on small datasets (less than 100k rows)
	Excel
	Ad-hoc calculations and prototypes on larger datasets (more than 100k rows)
	Python
	Python
	Robustness in production
	Excel
	Checking results and sharing results
	Python
	Ability to achieve best practices
	Automation / amount of manual effort required
	Python
	Excel
	Stability
	Python
	Expected rate of future improvements
	Python
	Big data
	Python
	Speed
	Python
	Advanced scientific computing capabilities
	Python
	Machine learning capabilities
	Why Actuaries Use Python
	The Future of Python
	How can Milliman help?
	Appendix A: Popularity
	Stack Overflow Trends 10F
	Google Trends: Interest Over Time 11F
	IEEE Spectrum: The Top Programming Languages 202012F
	TIOBE Index for May 202113F
	Github: The State of the Octoverse 202014F

	CONTACT

