Economic Capital Related to Pension Closeout and Payout Annuity Liabilities, Before and After Longevity Hedging A Case Study

Stuart Silverman, FSA, MAAA, CERA
Principal \& Consulting Actuary

May 1, 2009

WILL COVER:

- US Statutory Reserve and Capital Methodology
- Economic Reserve and Capital
- Comparing Statutory Capital to Economic Capital
- Range of Economic Liabilities and Capital - current and over time
- Managing Economic Capital

Case Study - a block of Single Premium Immediate Annuities (SPIA)

Age	Annual Benefit	Lives
65	50,000	7,000
70	43,600	6,000
75	38,800	5,000
80	34,200	4,000
85	27,700	3,000

* All lives are males

Statutory Reserves

- Statutory Reserve for Immediate Annuities
- Defined deterministic formula using prescribed mortality table with prescribed discount rate
- Annuity 2000 mortality table
- Contains 10\% reduction to mortality rates
- Does NOT reflect mortality improvement
- Statutory Discount Rate
- Current discount rate is 5.50%
- Principles Based Reserving - the future
- Still far off as they have not yet focused on Payout Annuities

Statutory Capital

- NAIC Risk Based Capital (RBC)
- Factor driven formula
- \quad C1 - Asset Default Risk
- C2 - Insurance Mispricing Risk
- C3 - Interest Rate Mismatch Risk
- C4 - General Other Risks
- Formula to reflect correlation adjustments
- Companies usually hold multiples of Company Action Level RBC
- Level depends on desired rating
- Usually 250% to 450%

RBC for SPIA block

- C1 and C3 are non-zero
- C2 and C4 are zero
- There is no RBC charge for longevity risk
- Given recent levels of mortality improvement, this is probably an oversight

Economic Reserves and Capital

- Principles Based Approach
- No set definition, although building consensus
- Economic Reserve calculated as best estimate valuation
- With or without margins
- Economic Capital defined as additional capital that satisfies a defined risk measure
- For example, CTE90 or $99.5^{\text {th }}$ Percentile

Economic Calculation Methodology

- Stochastic Process
- Provides useful information (e.g., confidence intervals, standard deviations)
- CTE90 or $99.5^{\text {th }}$ percentile economic liability values could be an amount that represents economic capital
- Need to recognize dynamic assumption set
- Assuming a static assumption set will not provide useful information relating to confidence intervals

Volatility in Underlying Assumptions

- Mortality
- Underlying baseline mortality table
- Is the base table appropriate for population being valued?
- Future Trends in Mortality Improvement
- General trends based on historical levels of volatility
- Extreme longevity events not reflected in historical levels of volatility (e.g., medical breakthrough that significantly reduces cancer related deaths)
- Catastrophic mortality events (e.g., pandemic, terrorist attack)

Economic Capital

- Assuming best estimate investment return, Economic Capital is a measure of longevity risk (for SPIAs)
- A representative value for C2
- Need to also reflect asset related risk
- The discount rate is a sensitive issue in Principles Based Reserve discussions
- Could discount at treasuries to eliminate default and spread risk
- Could discount at expected earned rate assumption less a charge for a total return swap

Statutory Reserves and Capital (\$ in billions)

Age	Benefit	Lives	NSP	Stat Rsv @ 5.5\%
65	50,000	7,000	12.09	4.23
70	43,600	6,000	10.68	2.79
75	38,800	5,000	9.21	1.79
80	34,200	4,000	7.74	1.06
85	27,700	3,000	6.37	0.53
Total Stat Reserve				\$10.40
CAL RBC C-1 Risk - Asset Default				0.11
CAL RBC C-2 Risk - Insurance Risk				0.00
CAL RBC C-3 Risk - Interest Rate Mismatch				0.05
Total CAL RBC				0.16
400\% CAL RBC				\$0.64
Total Asset Requirement				\$11.04

Static Economic Assumptions

- Annuity 2000 Basic Table
- Same as statutory mortality table without 10% loading for conservatism
- Mortality Improvement starting in 2000
- Based on historical improvement in general population mortality rates
- Assumed Earned Rate is 5.50\%
- same as Statutory Discount Rate
- But pay 75 bps for a total return swap (reflects hedge for credit losses and interest rate mismatch)
- That guarantees 4.75% return
- Thus, use 4.75% discount rate for discounting economic cash flows

Dynamic Mortality Assumptions

- Volatile Baseline Mortality Table
- Normal Distribution with 5% standard deviation
- Volatile Mortality Improvement Assumption
- Based on historical levels of volatility in mortality improvement by age and gender
- Reflects correlations across age groups and time intervals
- Reflects the probability of extreme mortality improvement outside historical trends
- Medical breakthroughs
- Reflects the probability of a catastrophic mortality event (e.g., pandemic)
- Not relevant for determining economic capital in a SPIA block but would be relevant in determining economic capital in a block of close out annuities that pay death benefits before retirement

Economic Reserve and Capital (\$ in billions)

(1) Average Economic Liability Value discounted at 5.50\% ("Economic Reserve")
(2) Economic Liability Value discounted at 5.50\%
(3) Economic Liability Value discounted at 4.75\%

Capital for Longevity Risk (2) - (1)
Capital for Asset Risk (3) - (2)
Total Economic Capital: (3) - (1)
\$10.61
99.5th Percentile
$\$ 11.44$
\$12.18
$\$ 0.83$
\$0.74
$\$ 1.57$
$\$ 1.26$

Comparison of Statutory to Economic (\$ in billions)

	(1)	(2)	(3)	(4)	(5)	
		Economic99.5 thEconomic 90				
	Statutory	Percentile	(1) / (2)	CTE	(1) / (4)	
Reserve	\$10.40	\$10.61	98\%	\$10.61	98\%	
Capital for Asset Risk	\$0.64	\$0.74	86\%	\$0.70	90\%	
Capital for Longevity Risk	\$0.00	\$0.83	0\%	\$0.55	0\%	
Total Capital	\$0.64	\$1.57	40\%	\$1.26	51\%	
Asset (Reserve + Capital)	\$11.04	\$12.18	91\%	\$11.87	93\%	

Distribution of Current Economic Liability - discounted at 4.75\%

Distribution of Scenarios by Present Value on Valuation Date

Economic Liability Value Over Time (with static assumptions) discounted at 4.75\%

Economic Liability Value Over Time (with volatile assumptions) discounted at 4.75\%

Distribution of Scenarios by Present Value on January 1 of Each Calendar Year

Economic Liability Value as a Percentage of the Average Value
$\underline{100 \%} \square$ 00.070

Average Economic Liability with Volatile Assumptions

 / Average Economic Liability with Static Assumptions - 1 \perp

Milliman

How to Reduce Economic Capital

- Not an easy task
- First step - Analysis
- Recognize volatility in underlying assumptions
- Analyze annuity liabilities in conjunction with life insurance liabilities
- Negatively correlated, but not perfectly
- Next Step - Action
- Longevity Derivatives
- Longevity Bonds and Longevity Swaps
- Target new business to complement existing risks
- Work with Rating Agencies
- ERM programs may result in improved ratings
- May give credit and lower required capital based on initial analysis

Economic Capital with Longevity Bond

- 10 Year Longevity Bond
- \$1 Billion Principal
- Investment Assumption is 4.75\%
- Pay 5.50\% Coupons
- After 10 years, repay principal assuming Economic Liability is below Attachment Point
- Keep proportional principal above Attachment Point until Exhaustion
- Attachment Point = 115\%
- Exhaustion Point = 125\%

Characteristics of Hypothetical Longevity Bond

- Probability of Attachment - 4.0\% (i.e., 40 scenarios out of 1,000)
- Expected Loss - 1.2\% of Principal at the end of 10 years
- Average Loss of 40 Attachment scenarios - $\$ 308$ million
- Probability of Exhaustion - 0.2\% (i.e., 2 scenarios out of 1,000)

Initial Economic Liability Before and After Liability Hedge -

 discounted at 4.75\% (\$ in billions)Average
75th Percentile
90th Percentile
99th Percentile
99.5th Percentile

Before Hedge
\$11.20
\$11.44
\$11.68
\$12.04
\$12.18

After Hedge
\$11.26
\$11.51
\$11.74
\$11.94
\$11.95

Difference
\$0.06
$\$ 0.07$
\$0.06
(\$0.10)
(\$0.22)

Beginning of Tenth Duration Economic Liability Before and After Liability Hedge - discounted at 4.75\% (\$ in billions)

Average
75th Percentile
90th Percentile
99th Percentile
99.5th Percentile

Before Hedge	After Hedge	Difference
$\$ 6.08$	$\$ 6.07$	$\$ 0.00$
$\$ 6.41$	$\$ 6.42$	$\$ 0.01$
$\$ 6.72$	$\$ 6.71$	$(\$ 0.01)$
$\$ 7.22$	$\$ 6.97$	$(\$ 0.25)$
$\$ 7.35$	$\$ 6.98$	$(\$ 0.37)$

Contact Information

Stuart Silverman, FSA, MAAA, CERA
Principal \& Consulting Actuary stuart.silverman@milliman.com
+1-646-473-3108
One Penn Plaza
38th Floor
New York, NY 10119

